Reservations Documentation (Plan “B”)
June 28, 2013
General Usage:
I’ve written the application so that only two pages are expected to be exposed to the general public, the reservations page and the sign-in sheets. The yellow disclaimer message on the web site is usually not shown. It is here to reassure casual visitors that their email addresses will not be stored, even though the system is fully functional. When the system is deployed in a production environment, one line of the code is changed, the yellow disclaimer disappears, and the various email addresses are stored, but not visible unless an administrative report is run.
[image:]
Once someone clicks the link to register, they are prompted for their name, and if they have not been here before, their email address.
Removing themselves from the registration list is just as simple, select the “remove” link, supply the email address to prevent web crawlers or malicious people from doing evil things, and they’re off the list.
Enter “not_saved” if you are running the demo, and the real live email address if you are closer to a production environment.
For this system to work, one must be able to add and change registration opportunities. That particular page is password protected (via the login page) to avoid web crawlers messing around. Don’t laugh, they have “deregistered” every person we had signed up in a matter of minutes. Corrective action (I fixed the code so they can’t do that) is already in place.
Adding or changing a registration event:
[image:]
In the first part of the page, you add an event. The “#days to show” may be confusing. In the past we have had people sign up for every Saturday drop-in session for the entire season, and conveniently “forget” to remove their name if they are not attending. This prevents additional people from subscribing and is simply not fair. The “days to show” field prohibits that type of activity because the event does not show up on the registration page until it is within the 10 day window. Of course after the event is over (ok, the next day) the event disappears. Why would you sign up for an event that’s already over?
In the second part you see a list of events already added. Click one and the third part of the page changes to reflect the item you just selected to modify. This part allows you to update something already present, including the event description, attendees, etc.
If you need to cancel an event, it is best to simply come back here and change the start date to 0000-00-00. This keeps referential integrity and prevents other pieces of code from failing because an expected event is really missing.
We have two reports available. The first is publically available and simply prints a sign-in sheet for the event. The second page is off of the login page because email addresses are listed if you are logged in. If you are not logged in, this report is still visible, but without the email addresses.
This second report (rosterAsCsv.php) give you more flexibility than you might imagine. The report pages generate a .csv (comma separated values) file that you can cut and paste into notepad and save locally. Be sure it’s named with a .csv extension instead of .txt. Double click it and you’ll launch Excel (or your favorite spreadsheet program) and you can sort and print any way you want. Just be careful about ignoring the “cancelled_when” column. The person cancelled their registration, often ahead of time, meaning they are not necessarily a “no show”.
In our situation (Potomac Curling Club) we use the curlers table for many things. So it becomes necessary to maintain the curlers in case they should do something silly like want the spelling of their name corrected, or heaven forbid get a new email address. The “manage curlers” page lets you modify their information, and even delete it if they are simply an entry in the database with no activity.
Installation:
The system was written in the php language with mysql as a database. Virtually all web hosting sites have this available. Login credentials, controlling what an administrator can see vs. what a guest can see, are validated using php session variables. Cookies are not utilized.
By far the most complex part of the installation is building the database and populating tables for the events. For the web page(s) to communicate with the database, there must be an id and password involved. This id/password is never exposed to any user, other than a dba (Data Base Administrator) and is used exclusively by the web page(s) to communicate with the database. This user can be built before or after the database tables are defined, so we’ll do it later.
You must have a database. It can be a unique database for this application, or it can be shared if you already have a database. The method of building a database depends on the hosting company you use, but usually a graphic interface is available. We’ll assume it’s called “test”, although the name of the database really does not matter. Once the database is available, you’ll need to build three tables. Again, it can be done via the gui, but it’s much easier to cut/paste the following into the sql section of phpmyadmin.
CREATE TABLE `curlers` (
 `curlerID` smallint(5) unsigned NOT NULL AUTO_INCREMENT,
 `fname` varchar(25) NOT NULL DEFAULT '',
 `lname` varchar(35) NOT NULL DEFAULT '',
 `email` varchar(80) NOT NULL DEFAULT '',
 `member` tinyint(4) NOT NULL DEFAULT '0',
 UNIQUE KEY `curlerID` (`curlerID`)
) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

CREATE TABLE `reserve_events2` (
 `re_id` smallint(6) NOT NULL AUTO_INCREMENT,
 `re_description` varchar(40) NOT NULL DEFAULT '',
 `re_start` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',
 `re_openings` smallint(6) NOT NULL DEFAULT '0',
 `re_ stdby` tinyint(4) NOT NULL DEFAULT '0',
 `re_days_to_display` smallint(6) NOT NULL DEFAULT '0',
 UNIQUE KEY `re_id` (`re_id`)
) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

CREATE TABLE `reserve_names2` (
 `re_id` smallint(6) NOT NULL DEFAULT '0',
 `curlerID` smallint(6) NOT NULL DEFAULT '0',
 `rn_reserved_when` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',
 `rn_cancel_when` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',
 `ip_addr` varchar(45) NULL
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

Included in the zip file you’ve downloaded is the sample that I use to load the tables. I created them using the gui, then exported them because I want to reload tables frequently for testing. It’s called “create.tables.sql”.
If you have used a previous version of this software the tables are already defined. You will need to add a single column called ip_addr. Use phpMyAdmin and enter the following line of sql:
ALTER TABLE `reserve_names2` ADD ip_addr VARCHAR(45) NULL;
Now that the tables are built and populated, you need a user. This is a system user, not a human. It’s often called a “uuid”, although it’s just a user. Our hosting company is bluehost.com, and they really want the user definitions to be created via their gui. I test on my local pc using the usbwebserver (usbwebserver.net/en/) version 8.5. The usbwebserver easily fits on a thumb drive. I did need to enable session variables in the usbseverver/settings/php.ini file, a one line change with good commenting. The rest of it worked perfectly “out of the box”. I built the user named “demo”, with the password of “demopass” via the sql command line in phpmyadmin. When I moved to bluehost, I needed to use their gui. Oh well, both work.
These commands worked for me:

Create a user:
CREATE USER 'demo'@'localhost' IDENTIFIED BY 'demopass';
GRANT SELECT, INSERT, DELETE, UPDATE, CREATE TEMPORARY TABLES ON test.* TO 'demo'@'localhost';

If you are in a shared DB, then just grant permissions (3 times) to each table:
GRANT SELECT, INSERT, DELETE, UPDATE ON test.curlers TO 'demo'@'localhost';
GRANT SELECT, INSERT, DELETE, UPDATE ON test.reserve_events TO 'demo'@'localhost';
GRANT SELECT, INSERT, DELETE, UPDATE ON test.reserve_names TO 'demo'@'localhost';

or if all else fails give them everything... but that defeats plp (Principles of Least Privilege)
GRANT ALL ON test.* TO 'demo'@'localhost';

OK, you’re done with the database part, now on with the web page(s). That’s trivial. Use your favorite ftp client (I use filezilla, but there are many good alternatives) and upload the following files to a directory on your hosting site. I do recommend a single directory for testing. See the security section later on.
data_valid_fns.php
db_connect.php
login.php
logout.php
logoutButton.php
managePeople.php
manageReservationEvents.php
masthead.php
reservations.php
res_style.css
rosterAsCsv.php
signInSheet.php

Modify the db_connec.php file as described below. Then crank up your favorite web browser, navigate to: yourwebsite/yourDirectory/reservations.php, cross your fingers, and if when it works sit back and admire your handiwork. Well, it’s not quite that simple, you must go to the login page, login, and build an event before you can test the registration process.
It’s quite possible to install different files in different directories. For instance the css and db_connect files are prime candidates for an “include” directory. The login, reports, and manageReservation pages could be separated into an admin directory. The bad news is that it is up to you to handle it. I’ve stuck them all in one directory for simplicity, and it does work, although in our production environment at the Potomac Curling Club, they are separated as we use common routines.

Customization:
The customization required should be reasonably straightforward. The changes required all involve what I hope is minor tweaks to the code. Use your favorite text editor, including notepad, just don’t use Microsoft Word etc. I use either TextPad (paid) or Notepad++ (free), depending on what mood I’m in and if I need to collapse sections of code.
db_connect.php
You’ll need to change the hostname, dbname, username, and password in the connectToMysqli() function on lines 4-7.
masthead.php:
You obviously don’t want the “howardgriffin.org” masthead, so edit the masthead.php file and substitute your own. It could simply be a .jpg file, or could include navigation back to your home page etc. It’s your web site after all.
reservations.php:
this one will need several changes, and a bit of continuing maintenance as time passes. Search for the text “change code here” in the code and the few lines following will be where updates are needed.
About line 48 is the “demoMode” variable. Change it from “true” to “false” to get rid of the yellow notice and actually save user’s email addresses. If you are loggedin ($currUser != “”) then the days to show can be adjusted so you as an administrator can see all of the events, not just the ones currently available to the public.
We do have a few categories of “repeating events”, such as our regular Saturday morning drop in. We also have LTC (Learn to Curl) events scheduled throughout the year. People wishing to look at (for instance) LTC just want to see LTC. The ability to filter for repeating events starts about line 160 and is flagged by “change code here” text. When you build your events, make sure that all the events you wish to filter start with the same characters.
Sometimes you’ll want to show a special message for people that register for a specific event. Mostly not, but you just might. The notice box is defined starting about line 560, again flagged by “change code here” text.
login.php:
You’ll probably want to change my default id and password combination. That’s lines 7-8. You’ll also want to remove the lines discussing the public id/password for the demo site, on line(s) about 67-70.
Other changes?
Actually please change anything you want to make it better for your environment. The code is offered "as is", with no warranty expressed or implied. It may work for you, or it may not. The only support I can offer is to reply to email questions, and help explain how we at Potomac Curling Club used it. Feel free to modify or customize or improve on it any way that you see fit.

Login and Security:
There really isn’t a lot of security in here. The login page is provided as a simple method of allowing you to hide email addresses from the casual viewer. We at the Potomac Curling Club use something different, involving levels of permissions and user authentication via a database. You could utilize the unix / linux security of the .htaccess controls, but that fails in a Microsoft environment. You could use cookies, but years ago we chose session variables instead, and I’m too lazy to change, not to mention I don’t see much value in the change. You would be better off moving all the login stuff to a separate directory, but then code must change, and I can’t determine what your directory structure will be, nor would I need to.
Once you go live, I do recommend backing up the tables periodically. I use the linux cron facility at 4:00 am weekly to run a backup script. If it’s really busy I also do it in the middle of the afternoon, it only takes a few seconds and its cheap (ok free) insurance for my peace of mind.

image1.png

image2.png

